
In practice, unit testing is hard and expensive to perform effectively because developer need to 

write driver/harness code to simulate the environment of isolated component. The paper DART: 

Directed Automated Random Testing proposed automatic random test generation method to 

reduce the labor cost of writing unit test and eventually improve software quality. DART uses 

static source-code parsing to automatically extract the interface of a program with its 

environment, then generate a test driver for the interface to perform random testing, finally use  

dynamic analysis to analyze program behaviors and automatically generate new test input to 

direct systematically the execution along alternative program paths. The author evaluate DART 

with three benchmark AC-controller, Needham-Schroeder Protocol and oSIP to compare direct 

search vs random search, measure effectiveness and scalability. As a result, DART is more 

effective than simple random search, effectively find assertion violation in Needham-Schroeder 

Protocol and scale well on large application oSIP with 30,000 lines of C code describing about 

600 externally visible functions.  

 

The main contribution of the paper are two points: 1. combine automatic random testing with 

automatic interface extraction, 2. use dynamic test generation to drive the program along 

alternative conditional branches to improve the effectiveness of finding errors. DART is able to 

dynamically learn the execution of the program in directed search. DART starts with a random 

input and a DART instrumental program will calculate an input vector during the execution. The 

input vector will force the next execution through a new path by having value that represents the 

solution of symbolic constrains which are gathered from predicated in branch during the 

execution. This dynamic input generation is much more effective than random testing since it 

attempts to force the program to run through all execution paths while the simple random testing 

are unlikely to discover all execution paths. 

 

Though DART can generate input to crash one component but in reality the bugs that DART 

found were not necessary to be the vulnerability or bugs in the whole system. In evaluation, 

DART is tested against oSIP. The author claims that some oSIP functions do not have the check 

for NULL pointers so they will crash when it try to de-reference NULL pointers. However, in 

practice, the higher-level application that uses oSIP might have check for NULL pointers and 

never pass NULL pointers to oSIP API. Therefore, the bugs that DART found could be false 

positive when taking the whole system or software into account. This is also the limitation of 

unit testing, the implicit assumption for input of one specific component might exist in external 

component. By using DART in this situation will give numerous errors which might not worth 

taking a lot efforts to go through they and verify it is a bug that will threat the whole system. 

Furthermore, developers are often utilize the side-effects of certain functions which also might 

be reported as potential problems by DART. 

 

A future work of DART can be automatically apply input constrains which are gathered from 

external component, developer documents, defined by the developer that could improve the 

accuracy for large scale software. By taking into account of external component which are 

calling the function to be tested, the potential problem that reported by DART could be more 

valuable for developer.   


