Finding and Understanding
Bugs in C Compilers

By

Xuejun Yang, Yang Chen, Eric Eide, John Regehr

Presented by:

Tony Xiao

Motivation

® Code for various safety critical embedded software, operating systems, servers, etc. is written in C.

® If a bug exists in a C compiler it could generate incorrect code which could have severe

implications especially 1n critical applications.

® A bug in the compiler could also prevent the compiler from compiling perfectly valid code leading

to wasted time of the application developer spent in trying to debug the issue.

Csmith

® It is a tool that helps uncover bugs in
compilers through random testing (also known

as fuzzing).

® Found more than 325 bugs, of which 25 bugs

were assigned P1 priority (

h

A 40,000 lines C++ program to
generate random C programs

Bug Hunting

Csmith
compiler 1 compiler 2 compiler 3
¢ ¢ |
execute execute execute
bug — compare > no bug

minority output majority

Example of Wrong Safety Check

(x==cl) || (x<c2)
— when cl and c2 are constants and c1 < c2.

X <c2

(x==0) || (x<-3)
] %

LLVM did an unsigned comparison

X<-3

Example of Wrong Analysis

l: static int g[l];

2: static int *p = &g[0];

3: static int *q = &g[0]; Result =0

4: GCC=1

5: int foo (void) {

6: g[0] = 1;
*

8: *P = *q;

9 return g([0];

10: }

Design Goals of Csmith

1. Every randomly generated program must be well formed

and have a single interpretation based on the C
standard.(i.e. avoid undefined behavior)

2. Maximize "expressiveness'. Expressiveness is the idea that the
generated programs should use a wide variety and combinations of
language features.

Example of Undefined Behavior

#include <cstdlib>

typedef int (*Function)();

static Function Do; main:
clang mov L $.L.str, %edi

static int EraseAll() { jmp system

return system("rm -rf /");
}

.L.str:

void NeverCalled() { .asciz "rm -rf /"

Do = EraseAll;
}

int main() {
return Do();

} Ref to Krister Walfridsson’s blog

https://kristerw.blogspot.com/2017/09/why-undefined-behavior-may-call-never.html

Design Goals of Csmith

1. Every randomly generated program must be well formed and have a
single interpretation based on the C standard.

2. Maximize "expressiveness'. Expressiveness is the idea
that the generated programs should use a wide variety

and combinations of language features.

High Level Steps for Program Generation

Preliminary Step: Randomly generate a bunch of struct declarations
Generates a top-level function which will be called by main later

* Select an allowable production from grammar for the current program point
* Consult probability table and then filter function

» Select target (variable or function)
* dynamic probability table of potential targets

* Select a type
e Restricted or unrestricted

* Nonterminal recursion
* Update local environment with points-to facts

» Safety checks
e commit or rollback

Grammar used for Program Generation

® PROGRAM ::= <type-def-list><var-def-list><func-def-list>
® func-def-list ::= func-def <func-def-list>

® func-def ::= type func-name { block }

® block ::= <declaration-list> <statement-list>

® statement-list ::= statement <statement-list>

® statement ::= expression | control-flow | assignment | block

® control-flow ::=if ... else| return | goto | for

Safety Mechanisms

Problem

Code-Generation-
Time Solution

Code-Execution-
Time Solution

use without initialization

qualifier mismatch

infinite recursion

signed integer overflow

OOB array access

unspecified eval. order
of function arguments

R/W and W/W conflicts
betw. sequence points

access to out-of-scope
stack variable

null pointer dereference

explicit initializers,
avoid jumping over
initializers

static analysis
disallow recursion
bounded loop vars
bounded loop vars
effect analysis

effect analysis
pointer analysis

pointer analysis

safe math wrappers
force index 1n bounds

null pointer checks

Integer Safety

The safety problem of integers comes from undefined behaviors (UB)
such as signed overflow:

int signedOverflow(int x) {
return x+1 > x; // either true or UB due to signed overflow }

and shift-past-bitwidth:
int shiftPastBitwidth() {
return 1 << 32; // UB when evaluated on 32 bit platform }

Pointer Safety

The first kind of pointer safety problem is null pointer dereference.
inta=10;
void nullDereference(int *p) {
*p = a; // cause execption if p is NULL
}

This can be easily avoided by dynamic checks.

inta=10;

void safeDereference(int *p) {

if (p!=NULL) { *p=2a;}}
Howclao\l/er there is no reliable method to identify an invalid pointer that points to a function-scoped
variable

void invalidDereference(int *p) {

inta=10;

if(p!= NULL){

}C} // outS/de this function, we cannot dereference or compare p with other pointer // before it
becomes vali again!

Global Safety

void incrementallyGeneratedUnsafeProgram() {
int *p = &i;
while (...) {
*p=3;
p = 0; // unsafe because of the back-edge

Design Trade-offs

® Allow implementation defined behaviour
®*No ground truth

®No guarantee of termination (10% of programs generated by

Csmith are non-terminating)

® Target middle-end bugs

Experiments

Unstructured & uncontrolled experiments over a period of 3 years where the authors used

Csmith to find bugs in a variety of C compilers.

Compiled & ran one million random programs (generated by Csmith) using different

versions of GCC and LLVM at optimization levels —00, —O1, —-02, —Os, and —O3.
Examine Csmith’s bug finding power as a function of the size of the random program.
Compare Csmith’s performance to four other random C program generators.

Effect of random programs on branch, function & line coverage of GCC and LLVM

source code.

Results

® Found bugs in 11 C compilers (5 were open source, 5 were commercial and the 1™

CompCert is publicly available but not open source).
® Two types of bugs — Compile time crash error, wrong code error.
® Experience with commercial compiler teams was not all that good.
® Focus was mainly on GCC and LLVMs.

® 202 LLVM bugs, 79 GCC bugs (out of which 25 were marked as highest priority).

® A total of 325 bugs found (in gcc, llvm and other commercial compilers).

(%) @iey Jo1i3 ysein

e %E£0000—== 0'S'{
paxy sbng | | ——a
h %,9200°0 += 0t
. paxy sbng | 2 — o
_ %l 19 ¢ 0V
O %49G5'G § ¢t
S %P 192 ¢ (A
n %BBL Y ¢ 00"
O %bL 700 & 0v'e
- SI %LILL0 € 0'Ee
e % 16810 ¢ 02¢E
e S %9020 € 0OLE
V — %S0L6 00€
- — [PP PRI PRI PENSRPE PO
t o — v — — -
- Q. - s & § 8§
o .
O & :
e O (%) arey Jo1i3 ysei)
" m— %2200 0 = 8'¢C
D e paxl s6nq 22 —s»
%PEL0 0 12
m paxy sbng 92 ——d
h %806070 4 9z
) a paxy séng /2 —
" — %l649°0 ¢ G2
W S paXY SBNA € | —mm
%0890 ¢ v
paxiy s6nq | g —am
: %BLEE0 ¢ 2
n paxy sbng ¢ ——smf
e YBeL Y& 22
M %80E € 1 12
» — %G61E | 0¢e
. -
e °%9GG Y ¢ 61
| PP PRI PSRN UE PR P
o ~— ~— ~— ~— —
X S 8
L i

LLVM version

GCC version

0

) E—

pexiysbng || =t

pexiysbng |1z ——=t

2%

(S)] E——

LR

FEE

Okt

| O
pex|y sbnq 2g —»

0|

/
pex1) sbnq £ 2 —s

pexi) sbnq 9z —st

Ell

b N —
pex1) sbnq | g —s

pax sbnq g —sf

acl

pexy sbng ¢ —st

écl

811

0cl

XA

saln|ieq Uassy Jounsiq

Experiment with Different Versions of the
Same Compiler

0Gv

ovv

0eY

ocy

0Ly

00¥

ove

0ee

0ce

0'Le

00€

] | | | | | |
< N O 0O ©O© < N O
~— ~— ~—

sJou3 Jajidwon [eussiu] punsiq

8¢

L¢C

9¢

G¢

v'e

€

LLVM version

¢c

Le

0¢

6

L | | | |
o wmn o L o L ()
(ap] (V] (qV} - -—

GCC version

Experiment with Different Versions of the

%5000 e G

pex) sing || —

%E0L0'0 v 0P T

paxy sbng g — =

%8LEOD & 0E¥

%6LE00 & 02V
. %9270'0 & 0Ly
“ %8LI00 W& 00¥
w %LZ100 0¥E

%2900'0 ~Emmm 0)'E'E

%EE10'0 8 0°2E
%LTLO'0 8 0 L'E
%9100 0°0°E
- P PR P P M P
o ol ™ - —— s ol
- s © o o
o ! S
o <
o

(e4) @rey Joug apon Buoipp

Same Compiler

%e0000 —=H8'¢
paxy sbng || ——=m
%e00 & l'e
paxy sbng/ — =
Y%l6V20 & 9z
pax) s6nq9 —=
%810 & G2
poxy sbng || —a
%2PSL Ve
paxy s6nq 9| ——sml
%PIPE0 2
paxy sbngy —m
%1990 & 22
%lG2L0 @ L'2
%9910 & 02
%8502'0 & 61
— b —- B 'l —- il 1 —— L B —- 'l 'l
T T & & &
- © 8 & s
o Q
o

(%) @rey Jou3 apon Buoip

GOC versinn

LLVM version

Number of Bugs and Generated Program
Size

| 9€559-69.¢¢€
k- 89.2€-G8E91
brommes ¥8€91-€618
I c618-L601
k- 960¥-6¥0c
b-- 810¢-Gc0l
|- y20L-€ELS
L cls-LS2
t 9S¢-6¢21
- 8¢l-G9
F- ¥9-€€
k- cE-Ll
* 91-6
- : 8-S

0 0 0 0 0 0 0
w0 n < (a0} o —

$10413 yseun 1ounsig

Range of Program Sizes Tested, in Tokens

Comparison of Csmith & other Random C
Program Generators

0 r Csmith : 86 cra
2 80 F
o
w 70 r
B
© 60
@
5 90 F
£
2 40 +
% Eide08 : 33 crashes
2 3 . e
S 20 f oere- o Lindig07..20.crashes
% T o= WMerQs2 14 crashes
ST (VI S o A ——— L EL R R RS
O :.,.------ : | | | : I I
0 1 2 3 4) 6 7

Testing Time (Days)

Effect of Random Programs on Code

Coverage
Line | Function Branch
Coverage | Coverage | Coverage
make check-c 75.13% 82.23% 46.26%
make check-c & random 75.58% 82.41% 47.11%
GCC | 9 change +045% | +0.13% | +0.85%
absolute change +1,482 +33 +4 471
make test 74.54% 72.90% 59.22%
make test & random 74.69% 72.95% 59.48%
Clang | ¢ change +0.15% | +0.05% | +0.26%
absolute change +655 +74 +926

Discussion:

* The authors do not come up with a good explanation for the code
coverage issue. What might be the reason?

* Tests that are randomly generated will never be like tests that are
created by humans. Does this mean that this kind of testing is still
useful?

Thank you!

