
Finding and Understanding
Bugs in C Compilers

Presented by:
Tony Xiao

By
Xuejun Yang, Yang Chen, Eric Eide, John Regehr

Motivation
• Code for various safety critical embedded software, operating systems, servers, etc. is written in C.

• If a bug exists in a C compiler it could generate incorrect code which could have severe
implications especially in critical applications.

• A bug in the compiler could also prevent the compiler from compiling perfectly valid code leading
to wasted time of the application developer spent in trying to debug the issue.

Csmith

• It is a tool that helps uncover bugs in
compilers through random testing (also known
as fuzzing).
• Found more than 325 bugs, of which 25 bugs

were assigned P1 priority

A 40,000 lines C++ program to
generate random C programs

Bug Hunting

(x == c1) || (x < c2)

x < c2

when c1 and c2 are constants and c1 < c2.

(x == 0) || (x < -3)

LLVM did an unsigned comparisonx < -3

0 < -3

Example of Wrong Safety Check

Example of Wrong Analysis

Result = 0
GCC = 1

Design Goals of Csmith

1. Every randomly generated program must be well formed
and have a single interpretation based on the C
standard.(i.e. avoid undefined behavior)

2. Maximize "expressiveness". Expressiveness is the idea that the
generated programs should use a wide variety and combinations of
language features.

clang

Ref to Krister Walfridsson’s blog

Example of Undefined Behavior

https://kristerw.blogspot.com/2017/09/why-undefined-behavior-may-call-never.html

Design Goals of Csmith

1. Every randomly generated program must be well formed and have a
single interpretation based on the C standard.

2. Maximize "expressiveness". Expressiveness is the idea
that the generated programs should use a wide variety
and combinations of language features.

High Level Steps for Program Generation
Preliminary Step: Randomly generate a bunch of struct declarations
Generates a top-level function which will be called by main later
• Select an allowable production from grammar for the current program point

• Consult probability table and then filter function
• Select target (variable or function)

• dynamic probability table of potential targets
• Select a type

• Restricted or unrestricted
• Nonterminal recursion
• Update local environment with points-to facts
• Safety checks

• commit or rollback

Grammar used for Program Generation

•PROGRAM ::= <type-def-list><var-def-list><func-def-list>
• func-def-list ::= func-def <func-def-list>
• func-def ::= type func-name { block }
• block ::= <declaration-list> <statement-list>

• statement-list ::= statement <statement-list>
• statement ::= expression | control-flow | assignment | block
• control-flow ::= if … else| return | goto | for

Safety Mechanisms

Integer Safety

The safety problem of integers comes from undefined behaviors (UB)
such as signed overflow:

int signedOverflow(int x) {
return x+1 > x; // either true or UB due to signed overflow }

and shift-past-bitwidth:
int shiftPastBitwidth() {
return 1 << 32; // UB when evaluated on 32 bit platform }

Pointer Safety
The first kind of pointer safety problem is null pointer dereference.

int a = 10;
void nullDereference(int *p) {
*p = a; // cause execption if p is NULL

}
This can be easily avoided by dynamic checks.

int a = 10;
void safeDereference(int *p) {
if (p != NULL) { *p = a; } }

However, there is no reliable method to identify an invalid pointer that points to a function-scoped
variable.

void invalidDereference(int *p) {
int a = 10;

if(p != NULL){
*p = a; } } // outside this function, we cannot dereference or compare p with other pointer // before it

becomes valid again!

Global Safety

void incrementallyGeneratedUnsafeProgram() {
int *p = &i;
while (...) {

*p = 3;
p = 0; // unsafe because of the back-edge

}
}

Design Trade-offs

•Allow implementation defined behaviour
•No ground truth
•No guarantee of termination (10% of programs generated by

Csmith are non-terminating)
•Target middle-end bugs

Experiments

1. Unstructured & uncontrolled experiments over a period of 3 years where the authors used
Csmith to find bugs in a variety of C compilers.

2. Compiled & ran one million random programs (generated by Csmith) using different
versions of GCC and LLVM at optimization levels –O0, –O1, –O2, –Os, and –O3.

3. Examine Csmith’s bug finding power as a function of the size of the random program.

4. Compare Csmith’s performance to four other random C program generators.

5. Effect of random programs on branch, function & line coverage of GCC and LLVM
source code.

Results

• Found bugs in 11 C compilers (5 were open source, 5 were commercial and the 11th,
CompCert is publicly available but not open source).
• Two types of bugs – Compile time crash error, wrong code error.
• Experience with commercial compiler teams was not all that good.
• Focus was mainly on GCC and LLVMs.
• 202 LLVM bugs, 79 GCC bugs (out of which 25 were marked as highest priority).
• A total of 325 bugs found (in gcc, llvm and other commercial compilers).

Experiment with Different Versions of the
Same Compiler

Experiment with Different Versions of the
Same Compiler

Experiment with Different Versions of the
Same Compiler

Number of Bugs and Generated Program
Size

Comparison of Csmith & other Random C
Program Generators

Effect of Random Programs on Code
Coverage

Discussion:

• The authors do not come up with a good explanation for the code
coverage issue. What might be the reason?
• Tests that are randomly generated will never be like tests that are

created by humans. Does this mean that this kind of testing is still
useful?

Thank you!

